dik üçgen http://www.kpsskonu.com Tue, 25 Dec 2018 12:47:50 +0000 tr-TR hourly 1 https://wordpress.org/?v=4.9.19 82898232 Özel Üçgenler : Dik üçgen – İkizkenar Üçgen – Eşkenar Üçgen http://www.kpsskonu.com/genel-yetenek/geometri/ozel-ucgenler/ http://www.kpsskonu.com/genel-yetenek/geometri/ozel-ucgenler/#comments Fri, 17 May 2013 01:15:33 +0000 http://www.kpsskonu.com/?p=1482 Özel üçgenler kpss geometri konusu içinde önemli bir yer kaplamaktadır. Üçgenlerle ilgili Kpss’de çıkan soruların çoğunda özel üçgenlerle ilgili teoremler ön plana çıkmaktadır. Özel üçgenler konusu dik üçgen, ikizkenar üçgen ve eşkenar üçgen olarak işlenecektir. Genelde teoremleri ya da formülleri ezbere dayalı olsa da, geometri sorularını çözerken mantık da ön plana çıkmaktadır. Konuyla ilgili bol […]

Bu yazı Özel Üçgenler : Dik üçgen – İkizkenar Üçgen – Eşkenar Üçgen ilk olarak şurada görüldü: .

]]>

Özel üçgenler kpss geometri konusu içinde önemli bir yer kaplamaktadır. Üçgenlerle ilgili Kpss’de çıkan soruların çoğunda özel üçgenlerle ilgili teoremler ön plana çıkmaktadır. Özel üçgenler konusu dik üçgen, ikizkenar üçgen ve eşkenar üçgen olarak işlenecektir. Genelde teoremleri ya da formülleri ezbere dayalı olsa da, geometri sorularını çözerken mantık da ön plana çıkmaktadır. Konuyla ilgili bol soru çözümüyle beraber formüller daha rahat akılda kalmaktadir. Ayrıca bol soru çözümüyle özel üçgenler ile ilgili kpss soru tiplerini de daha rahat kavrayabilirsiniz.

Özel Üçgenler

Kpss geometri Özel üçgenler konusu dik üçgen, ikizkenar üçgen ve eşkenar üçgen olmak üzere üçe ayrılır. İlk olarak Dik üçgen, pisagor teoremi ve öklid teoremi ile başlayalım.

Dik Üçgen

kpss dik üçgen Özel üçgenler içinde yer alan Dik üçgen, bir açısı dik olan üçgenlere denir. Dik üçgende en uzun kenara hipotenüs denir. Diğer kenarlara da dik kenarlar denir.

a= Hipotenüs  b ve c= Dik Kenar

 

* Dik Üçgenin Özellikleri:

Kpss geometri dersine ait dik üçgenin birçok özelliği bulunmaktadır. Bu özelliklerin içinde pisagor teoremi ve öklid teoremi de yer almaktadır. Şimdi bu özellikleri sıralayalım.

  • pisagor teoremi   Pisagor Teoremi:

{b^2} = {a^2} + {c^2} Bu teoreme göre hipotenüsün karesi, diğer dik kenarların karesinin toplamına eşittir. Kpss geometri sorularında genelde kullanılan bazı dik üçgen katları vardır. Bunlar;

3n, 4n, 5n üçgeni, 5n, 12n, 13n üçgeni, 7n, 24n, 25n üçgeni, 8n, 15n, 17n üçgeni gibi sorularda kalıplaşmış dik üçgen çeşitleri karşımıza çıkmaktadır.

 

  • kpss muhteşem üçlü  Muhteşem Üçlü: Bir dik üçgende hipotenüse ait kenarortay uzunluğu hipotenüsün yarısına eşittir. Buna geometri dersinde muhteşem üçlü denir.

{V_a} = \frac{a}{2}

  • kpss dik kenar  Bir ikizkenar üçgende hipotenüsün uzunluğu dik kenarın \sqrt 2 katıdır.

 

 

 

  • kpss öklid teoremi  Öklid Teoremi: Bu teorem dik üçgenler içinde önemli bir yer kaplamaktadır ve birçok kpss üçgen sorusunun kısa yoldan çözülmesine olanak sağlamaktadır. Öklid teoremi uygulanabilmesi için dik bir üçgende hipotenüse ayrı bir dik (h) inmesi gerekmektedir. Öklid teoremi ile ilgili formüller aşağıda listelenmiştir.

\begin{array}{l}{h^2} = p.k\\{c^2} = p.a\\{b^2} = k.a\\a.h = b.c\\\frac{1}{{{h^2}}} = \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}}\end{array}

 

 

 

 

  • 30 60 90 üçgeni  90-60-30 Üçgeni: Bir dik üçgende dar açılardan biri 30 ise, 30 derecelik açının karşısındaki kenar hipotenüsün yarısında eşittir. 60 derecelik açının karşısındaki kenarın uzunluğu da 30 derecelik açı karşısındaki kenarın \sqrt 3 katına eşittir.

 

 

  • hipotenüs yükseklik  Bir dik üçgende dar açılardan birinin ölçüsü 15 derece ise, hipotenüs uzunluğu hipotenüse ait yüksekliğin 4 katıdır.

 

 

  • dik üçgenin özelliği  P ve K üçgenin içinde herhangi iki nokta olmak üzere;

|PK{|^2} + |BC{|^2} = |BK{|^2} + |PC{|^2}

 

 

Özel üçgenler içinde yer alan dik üçgen ile ilgili özellikler tamamlanmıştır. Şimdi özel üçgenler içinde yer alan ikizkenar üçgen konusuna bakalım.

İkizkenar Üçgen

kpss ikizkenar üçgenÖzel üçgenler içinde, iki kenarı eşit olan üçgenlere ikizkenar üçgen denmektedir.  Yandaki ikizkenar üçgene göre;

A: Tepe noktası

a: Taban uzunluğu

m(A): Tepe açısı olarak adlandırılmaktadır.

  • Eşit kenarların karşısındaki açılar eşittir.
|AB| = |AC| = > m(\hat B) = m(\hat C)
  • İkizkenar üçgende tabana ait yükseklik, kenarortay ve açıortay uzunlukları eşittir.

{h_a} = {V_a} = {n_a}

  •     kpss paralel ikizkenar

|AB| = |AC|

[PK]//[AB]

[PL]//[AC]

|PK| + |PL|| = b = c

  •  ikizkenar dik üçgen kpss

Bir ABC ikizkenar üçgeninde;

[PK] \bot [AC]

[PL] \bot [AB]

|PK| + |PL| = {h_b} = {h_c}

 Eşkenar Üçgen

Özel üçgenler içinde yer alan eşkenar üçgen tüm kenar uzunlukları eşit olan üçgendir.

kpss eşkenar üçgen

|AB| = |BC| = |AC|

m(\hat A) = m(\hat B) = m(\hat C) = {60^ \circ }

 

 

  • Eşkenar üçgende bütün yükseklik, kenarortay ve açıortay uzunlukları eşittir.

{h_a} = {n_A} = {V_a} = \frac{{a\sqrt 3 }}{2}

  • Bir eşkenar üçgenin iç bölgesinde herhangi bir yerinden alınan bir noktadan, kenarlara inilen dikmelerin toplamı yüksekliğine eşittir.

kpss eşkenar dik üçgen

[DP] \bot [AB]

[PF] \bot [AC]

[PE] \bot [BC]

h = |PD| + |PF| + |PE|

  • Kpss genel yetenek geometri dersi özel üçgenler içinde yer alan bir eşkenar ğçgenin içinde alınan herhangi bir P noktasından kenarlara çizilen paralellerin uzunlukları toplamı eşkenar üçgenin bir kenarının uzunluğuna eşittir.

kpss eşkenar paralel

a = |PD| + |PF| + |PE|

 

 

  • Bir eşkenar üçgende ağırlık merkezi, çevrel ve içteğet çemberinin merkezi aynı noktatadır. Bu nokta aynı zamanda yüksekliklerin ve iç açıortayların da kesim noktasıdır.

kpss eşkenar üçgen çember

 

h=3r

R=2r

 

 

Kpss genel yetenek geometri dersine ait özel üçgenler ; dik üçgen, ikizkenar üçgen ve eşkenar üçgen konuları tamamlanmıştır. Bir sonraki kpss geometri dersinin konusuÜçgenin Alanı olacaktır.

Bu yazı Özel Üçgenler : Dik üçgen – İkizkenar Üçgen – Eşkenar Üçgen ilk olarak şurada görüldü: .

]]>
http://www.kpsskonu.com/genel-yetenek/geometri/ozel-ucgenler/feed/ 74 1482
Üçgende Açı Kenar Bağıntıları http://www.kpsskonu.com/genel-yetenek/geometri/ucgende-aci-kenar-bagintilari/ http://www.kpsskonu.com/genel-yetenek/geometri/ucgende-aci-kenar-bagintilari/#comments Sun, 31 Mar 2013 16:28:41 +0000 http://www.kpsskonu.com/?p=910 Açı kenar bağıntıları ile ilgili Kpss son 12 yılda 5 soru çıkarmıştır. Yıllara göre soru çıkma oranı fazla olmasa da geometri sorularının kpss puan hesaplamasında belirleyici rol oynadığını bildiğimiz için üçgende açı kenar bağıntıları konusunu iyi anlamamız gerekmektedir. Üçgende Açı Kenar Bağıntıları Bir üçgende herhangi bir kenarın uzunluğu , diğer iki kenarın toplamından küçük, farkının […]

Bu yazı Üçgende Açı Kenar Bağıntıları ilk olarak şurada görüldü: .

]]>

Açı kenar bağıntıları ile ilgili Kpss son 12 yılda 5 soru çıkarmıştır. Yıllara göre soru çıkma oranı fazla olmasa da geometri sorularının kpss puan hesaplamasında belirleyici rol oynadığını bildiğimiz için üçgende açı kenar bağıntıları konusunu iyi anlamamız gerekmektedir.

Üçgende Açı Kenar Bağıntıları

  • Bir üçgende herhangi bir kenarın uzunluğu , diğer iki kenarın toplamından küçük, farkının mutlak değerinden ise büyüktür. Aşağıda bu açı kenar bağıntıları ile ilgili formül yer almaktadır.

|b-c| < a < b + c

|a-c| < b < a + c

|a-b| < c < a + b

Daha iyi anlamamız açısından bir örnek verelim.

Örnek: Yukarıdaki ABC üçgenine göre |AB|=4, |AC|=8 ise |BC| uzunluğunun alabileceği değerleri nelerdir?

Çözüm: |BC| uzunluğu yani a kenarı bizden isteniyor. Yukarıdaki formüle göre:

8-4<a<8+4 => 4<a<12 sonucu çıkar. Bunun da anlamı a’nın alabileceği değerler 5,6,7,8,9,10,11 değerleridir.

 

üçgende açı kenar bağıntıları

  • Bir üçgende büyük açı karşısında büyük kenar, küçük açı karşısında küçük kenar bulunur.
  • m(\hat A) > m(\hat B) > m(\hat C) = >
    a > b > c sonucu çıkmaktadır.
Bir üçgende kenarlar arasında eşitlik var ise açılar arasında da eşitlik vardır.
  • Kpss geometri üçgende açı kenar bağıntıları konusunda bir diğer önemli nokta da geniş açı ve dar açı şartlarıdır.

dik üçgen kenar bağıntıları

m(\hat B) = {90^ \circ } olmak üzere;

{b^2} = {a^2} + {c^2}

 

 

açı kenar bağıntıları

m(B) < {90^ \circ } olmak üzere;

{b^2} < {a^2} + {c^2}

 

 

geniş açı

m(\hat B) > {90^ \circ } olmak üzere;

{b^2} > {a^2} + {c^2}

 

 

  • Geometri dersinin bu konusunda bir diğer özellik de çeşitkenar üçgenle ilgilidir. Çeşitkenar bir ABC üçgeninde A köşesinden çizilen yükselik, açıortay ve kenarortay arasında bir bağıntı oluşmaktadır. Bu bağıntı şu şekildedir:

çeşitkenar üçgen bağıntısı

 

{V_a} > {n_a} > {h_a}

 

  •  Bir üçgenin iç açıları arasındaki sıralama ile yardımcı elemanları arasındaki sıralama terstir.

açı kenar bağıntıları

m(A) > m(B) > m(C) \Leftrightarrow a > b > c olmak üzere;

{h_a} < {h_b} < {h_c}

{n_a} < {n_b} < {n_c}

{V_a} < {V_b} < {V_c}

Şimdi de kpss geometri dersinin üçgende açı kenar bağıntıları konusu ile ilgili birkaç örnek çözelim.

açı kenar bağıntıları örnek soruÖrnek: ABCD bir dörtgen olmak üzere;

|AB|=12, |AC|=8, |BD|=6, |DC|=9 olduğuna göre |BC|= x’in alabileceği tam sayı değerleri kaç tanedir?

Çözüm: ABC üçgeninde; 12-8<x<12+8 => 4<x<20

BCD üçgeninde; 9-6<x<9+6 => 3<x<15

Bu iki üçgenin sonucunu ortak çözersek

4<x<15 olacağından x’in alabileceği değerler 10 tane olacaktır.

üçgende açı kenar sorusuÖrnek: ABC bir üçgen, |AC|=7, |CB|=24 olmak üzere;

Yandaki şekilde C açısı geniş açı olduğuna göre |AB|=x’in alabileceği en küçük tam sayı değeri kaçtır?

Çözüm: Üçgen eşitsizliğinden;

24-7<x<24+7 burdan 17<x<31 sonucu çıkar.

Geniş açı sorulduğundan m(C)>90º olduğuna göre;

x²>7²+24²

x>25 => 25<x<31 olacağından x’in alabileceği en küçük tam sayı değeri 26 olacaktır.

Bir sonraki genel yetenek geometri dersinin konusu özel üçgenler olacaktır.

 

 

Bu yazı Üçgende Açı Kenar Bağıntıları ilk olarak şurada görüldü: .

]]>
http://www.kpsskonu.com/genel-yetenek/geometri/ucgende-aci-kenar-bagintilari/feed/ 23 910