n faktöriyel http://www.kpsskonu.com Tue, 25 Dec 2018 12:47:50 +0000 tr-TR hourly 1 https://wordpress.org/?v=4.9.19 82898232 Faktöriyel http://www.kpsskonu.com/genel-yetenek/matematik/faktoriyel/ http://www.kpsskonu.com/genel-yetenek/matematik/faktoriyel/#comments Thu, 09 May 2013 23:34:39 +0000 http://www.kpsskonu.com/?p=1414 Faktöriyel konusu kpss matematik sayı çeşitleri konusu içinde yer almaktadır. Önceki konularda sayı çeşitlerinden çift ve tek tam sayı işlemlerini, asal sayılar, aralarında asal sayılar , ardışık sayılar ve aritmetik dizi toplamını işlemiştik. Kpss matematik sayı çeşitleri konusuna şimdi de faktöryel ile devam edeceğiz. Faktöriyel Faktöriyel, 1’den başlayarak n’ye kadar olan pozitif tam sayıların çarpımına […]

Bu yazı Faktöriyel ilk olarak şurada görüldü: .

]]>

Faktöriyel konusu kpss matematik sayı çeşitleri konusu içinde yer almaktadır. Önceki konularda sayı çeşitlerinden çift ve tek tam sayı işlemlerini, asal sayılar, aralarında asal sayılar , ardışık sayılar ve aritmetik dizi toplamını işlemiştik. Kpss matematik sayı çeşitleri konusuna şimdi de faktöryel ile devam edeceğiz.

Faktöriyel

Faktöriyel, 1’den başlayarak n’ye kadar olan pozitif tam sayıların çarpımına denilmektedir. Bu çarpıma n faktöriyel denir ve n! şeklinde gösterilir. Kpss matematik dersinde yer alan bazı faktöriyel açılımları şu şekildedir:

0!=1

1!=1

2!=2.1=2

3!=3.2.1=6

4!=4.3.2.1=24

5!=5.4.3.2.1=120

6!=6.5.4.3.2.1=720

Kpss sorularında genelde 6! ve üstü direkt olarak sorulmaz. Sorular 6! ve daha düşük faktöryellere indirgenebilen sorulardır. Bize yüksek rakamlı faktöryel verildiği zaman emin olun ki yapılan işlemlerden sonra nihai olarak hesaplayacağımız faktöryel sonucu 6! üstünün geçmemektedir. Bu yüzden soruları hızlı çözebilmemiz açısından ufak olan faktöriyelleri ezberlememiz yerinde olacaktır.

Faktöriyel Özellikleri:

  • Büyük faktöriyel kendisinden küçük olan herhangi bir faktöriyele indirgenebilir.

5!=5.4.3!

11!=11.10.9.8.7!

  • Büyük faktöriyel, küçük faktöriyelin çarpanlarını içerisinde bulundurmaktadır. Bunun için küçük faktöriyeli tam bölen her sayı büyük faktöriyeli de kesinlikle tam böler.
6! i tam bölen herhangi bir sayı 6 faktöryelden sonra gelen herhangi bir faktöryeli de tam bölecektir. Yani 7! de 8! de ya da sonrasında gelen tüm faktöriyeller 6’ya tam bölünecektir. Çünkü içlerinde 6 çarpanı bulunmaktadır. 6 çarpanı varsa o sayı 6’ya tam bölünebilir demektir.
  •  5! ve sonrasında gelen faktöriyellerin son basamağında kesinlikler 0 bulunur.
  • 2! ve sonrasından gelen faktöriyellerin hepsi çift sayıdır.

Faktöriyel Soru Tipleri:

  • ”Sondan kaç basamağı sıfırdır?” ya da ”Sondan kaç basamağı 9’dur?” gibi sorularda verilen faktöryel sayısı devamlı olarak 5’e bölünür.

80! – 1 sayısının sondan kaç basamağı 9’dur?

Burada 80’i devamlı olarak 5’e böldüğümüzde;

16+3= 19 çıkar. Dolayısıyla 80! sayısının sondan 19 basamağı 9’dur. Eğer bize ”Sondan kaç basamağı 0’dır?” diye sorulsaydı cevap yine 19 olacaktı. Basit bir örnekle 1000 sayısının sondan 3 basamağı 0’dır. 1000-1 sonucu da 999’dur ve 999’un son üç basamağı 9’dur ki bu zaten sayının tamamıdır. Kısaca sondan kaç basamağı 0’dır ya da sondan kaç basamağı 9’dur (x!-1 olarak verildiğinde) sorularının çözüm yöntemi aynıdır.

  • \frac{{8! + 9!}}{{8! - 7!}} işleminin sonucu kaçtır?

Kpss genel yenetek matematik dersinde faktöryelin bu tip sorularında büyük faktöriyel soruda bulunan en küçük faktöriyele indirgenip ortak çarpan parantezine alınır.

\frac{{8! + 9!}}{{8! - 7!}} = \frac{{8.7! + 9.8.7!}}{{8.7! - 7!}}

\frac{{7(8 + 9.8)}}{{7(8 - 1)}} = \frac{{8 + 72}}{7} = \frac{{80}}{7}

  • (6-n)! ifadesinde n’in alabileceği kaç farklı değer vardır?
Faktöryel sayıları sadece doğal sayılardan oluşmaktadır. Dolayısıyla doğal sayılar kümesi dışında yer alan kavramlar faktöryel olamaz. Buradan n=0, 1, 2, 3, 4, 5, 6 değerlerini alabilir, yani n toplamda 7 değer alabilir.

Kpss genel yetenek matematik dersine ait Faktöriyel konusu tamamlanmıştır. Bir sonraki kpss matematik konusu sayıs sitemlerinden Basamak Değeri olacaktır.

 

 

 

 

Bu yazı Faktöriyel ilk olarak şurada görüldü: .

]]>
http://www.kpsskonu.com/genel-yetenek/matematik/faktoriyel/feed/ 67 1414